Cancer Treatment: Market Trends and Medical Update

White Paper
“Cancer is biggest area of private healthcare spend”

Undoubtedly, cancer remains the biggest area of spend in private healthcare and, according to our Clinical Support Team, this is set to continue.

Recent statistics reveal that 1 in 2 people born after 1960 in the UK will be diagnosed with some form of cancer in their lifetime with adults aged 50-74 accounting for more than half of all new cancer cases in the UK. This, coupled with changing age profiles in the UK, where it is estimated that by 2020 30% of workers will be over 50, suggests that employers are more likely than ever to encounter an employee with cancer. Furthermore, the median survival time for all cancer types has increased from 1 year to 6 years since 1980, supporting the premise that patients with cancer are living longer. This can be explained by advances made in cancer therapy, particularly drug treatments which have fewer side effects and can be taken for very long periods of time to keep the disease under control.

2017 was an exciting time for the cancer field. Survival rates for cancer patients were recorded at an all-time high and research suggests that with the advent of new therapies, these rates will continue to rise. Notably, in the last year we have seen a number of developments in the area of cancer treatment.
Cancer Advance of the Year

In 2017, the American Society of Clinical Oncology named adoptive cell immunotherapy as the clinical cancer advance of the year. This is quite a distinction, but a well-deserved one.

Immune cells navigate the body looking for anything that does not belong – bacteria, viruses, and even cancer cells. Once an intruder is detected, a class of immune cells, known as cytotoxic T cells, move in to eliminate it.

Unfortunately, cancers have a number of ways to hide from immune cells and avoid their attack. By genetically re-engineering a patient’s own immune T cells (CAR T-cells) these can be custom made to work against the cancer in each individual patient.

This type of therapy marks a milestone in the development of treatment for cancer and in August 2017 the Food and Drug Administration (FDA) approved the first CAR T-cell therapy for patients with certain types of blood cancer. This means that it is likely to be granted a European license in the near future. The cost of the drug alone is estimated at £400,000 and 83% of suitable patients are expected to respond to it. Due to cost however, it is unlikely that this drug will be approved by NICE and therefore we anticipate that this will only be available privately in the UK.

Credit: Cancer Research UK
Treating patients on the basis of tumour genetics, not location

Historically, cancer therapies have been approved for use on the basis of the tumour's location in the body and stage of cancer. Last year marked a milestone in the history of precision cancer medicine and cancer drug approvals: In May, the FDA approved its first tissue-agnostic treatment, which means that it was approved for use solely on the basis of the genetic make-up of a person's cancer, rather than the type of cancer or its location in the body.

It is estimated that between 10% and 33% of cancer cases in the UK could be suitable for this drug. The estimated cost for the drug alone is £150,000 for 12 months’ of treatment. As this drug is used in advanced cancers, treatment will be ongoing indefinitely as it aims to keep the disease under control while the patient is receiving the treatment. It is not known at this stage if this drug will be available in this context on the NHS.

Advances in radiotherapy: Proton beam therapy

Conventional radiotherapy uses high energy beams of radiation to destroy cancerous cells, but surrounding tissue can also be damaged. This can lead to side effects such as nausea, and can sometimes disrupt how some organs function. The UK is opening its doors to a relatively new form of radiotherapy which uses protons instead of photons.

Unlike conventional radiotherapy, in proton beam therapy the beam of protons stops once it "hits" the cancerous cells. This means that proton beam therapy results in much less damage to surrounding tissue.
Cancer Treatment: Market Trends and Medical Update

Proton beam therapy is useful for treating types of cancer in critical areas – when it is important to reduce damage to surrounding tissue as much as possible. For example, it is used most often to treat brain tumours in young children whose brains are still developing. Proton beam therapy can also be used to treat adult cancers where the cancer has developed near a place in the body where damage would cause serious complications, such as the optic nerve.

Proton beam therapy may cause less damage to healthy tissue, but it is still unclear whether it is as good at destroying cancerous tissue as conventional radiotherapy. As proton beam therapy is usually reserved for very rare types of cancer, it is hard to gather systematic evidence about its effectiveness when compared to radiotherapy. Proton beam therapy has not been available in the UK until recently but in April The Rutherford Cancer Centre opened its doors for the first time. This private facility will be providing proton beam therapy to adults and children.
Conclusion

As discussed, there are ground-breaking advances being made in the area of cancer treatment resulting in unprecedented survival rates. Nevertheless, these come at a significant cost and highlight the need for expert clinical assessment and input to ensure that recommended treatment is appropriate and cost-effective.

At Healix we are able to help our clients by tailoring the cancer cover under their corporate healthcare scheme to their particular requirements, appetite for risk and financial considerations.

References

Journal of Clinical Oncology. ASCO: American Society of Clinical Oncology: Clinical Advances in Cancer, 2018

Cancer Research UK: Cancer Incidence by age (2017)


Author: Keira Wallis, Nurse Consultant, Healix Health Services.